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1. Introduction

Ever since the electronic digital computer age commenced several
decades ago, digital computer designers have sought to make hardware
which can execute programs at ever faster rates. Two basic approaches to
the goal of higher computing throughput have been pursued: use of more
modern components which perform digital logic functions more rapidly and
more cheaply than the ones which they replace, and the use of components
of a fixed technological level in a more effective fashion. This thesis is
almost exclusively concerned with the latter; the former is of concern only
where recent technological advances have impacted the relative desirability

of certain choices, or where the algorithms used affect packaging decisions.

The author has designed the arithmetic hardware of the S-1 Mark
A uniprocessor system. The Mark IIA average throughput approaches
that of a Cray-1 when doing floating-point-intensive computations, but also
computes at very high performance levels when doing most other types of
modern digital data processing. The goal of the Mark ITA design effort
has been to realize a computing system with its capabilities distributed in

a balanced fashion throughout the spectrum of modern digital computing
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interests. Several of the techniques used in this effort at balanced high-
performance processor design are original and are described herein. In
addition, an attempt has been made to describe why these techniques are
useful and, since their relative values often depend upon choices that were
made during the definition of the architecture to be implemented and of its

high-level design, the rationale underlying these decisions is also sketched.

1.1 Outline of the Thesis.

Chapter 2 discusses pipelines and pipelined general-purpose com-
puters. It defines terms and provides a basis for the discussion in the

remainder of the thesis.

Chapter 3 is a somewhat detailed description of the S-1 Mark ITA. It
characterizes the framework within which the contributions of this thesis
have been made, as well as motivating many of the examples in later

chapters.

Chapter 4 resolves computer systems into two classes: those in which
the hardware uses the same representation for storage and for computation
and those which allow the two to be different. The advantages of the latter
type of system are described, with examples taken from the S-1 Mark ITA.

Chapter 5 describes a new floating-point addition algorithm which
has a significantly shorter latency than any previous ones which the author
has been able to discover. In addition, the technique used in the algo-

rithm permits the simultaneous computation of the floating-point sum and
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difference of two operands for much less than twice the hardware cost of
a single floating-point adder; such computations are highly useful in per-

forming many important algorithms such as the FFT.

Chapter 6 describes an algorithm for very fast computation of
elementary functions to medium precision. The method is applied to
computation of the functions for reciprocal, square-root, exponential,
logarithm, arctangent, sine, cosine, and error function. In essence, the
method permits the computation of a function with p bits of accuracy using
two p-bit multipliers and approximately 3p2§ bits of table look-up memory,
and requires very little more than a single multiplication time to execute.
The S-1 Mark ITA uses 1K RAM chips to achieve an accuracy of 30 bits
of precision for each of these functions, and also provides iterative means
for increasing precision to twice this level. The size of high-performance
RAMs are improving at rates comparable to most of the rest of semicon-
ductor technology; the maximum size RAM available doubles every two to
three years, implying that use of this algorithm will permit computation
with an extra bit of precision every year! Therefore, this technique may
well become the method of choice for elementary function evaluation on

future computer systems.

Chapter 7 presents an extension of the technique of skewed storage
representations in interleaved memory systems. Rather than skewing the
representation in main memory, a small memory is used to skew the data
“on the fly” during processing. Thus, standard representations of data may

be employed while nonetheless obtaining the efficient processing benefits of
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skewed storage. This extended technique has an important collateral ad-
vantage, as the hardware used to implement it can double as a throughput-

enhancing buffer between memory and the arithmetic processing element.

Chapter 8 derives several algorithms {which are based upon
Quicksort) for sorting of arrays on a parallel pipelined system. This algo-

rithms allow the efficient use of interleaved memory systems and pipelined

CPU:s.

Chapter 9 is the “implementation” section. It first describes why
high-performance arithmetic functional units (as well as other pipelines
which bave certain general characteristics) should be thought of as com-
putations on cylinders, and then presents a timing method for the pipeline
latches which greatly simplifies the distribution of certain global control

signals.

While Chapters 3 through 9 describe techniques actually used in the
design of the S-1 Mark ITA uniprocessor, Chapter 10 describes a technique
that the author would have used in this system, had the design schedule
permitted. It is an algorithm for out-of-order execution of instructions
that doesn’t suffer from imprecise interrupts. It involves a small memory
logically located just before the final output of the arithmetic hardware
that is used to re-order the results of computations. Thus, from its outside,
the arithmetic section appears to be a strictly in-sequence execution unit
(and can correctly recover from arithmetic faults); internally, however, it
can and does obtain all of the the overall performance advantages of an

out-of-order pipeline control mechanism.
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Chapter 11 summarizes the contributions made by the research
whose results are documented in this dissertation, and discusses directions

considered to be fruitful for further work in this area.



2. Preliminaries

Much of the work discussed in this thesis involves the concept of
pipelining {of both SIMD and SISD systems [Flynn72]). The reader is as-
sumed to be familiar with general concepts of pipelined systems and espe-
cially pipelining in SISD systems. ([Kogge81a] is an excellent introduction
to the subject.) We define a few terms that might otherwise be unclear.
The latency of an operation (for our purposes) is defined to be the time
from when the operation is “started” to when an immediately following
operation dependent upon the first is “started”. With this definition, an
operation may have many latencies, one for each possible way other opera-
tions could be dependent upon it. To make this more concrete, consider
the latencies possible with an integer multiplication instruction. On the
Mark ITA, which does shortstopping within the execution unit, the latency
of such a multiplication is three cycles with respect to a succeeding integer
operation, ten cycles with respect to a succeeding operation that uses the
result of the multiplication as an index, and thirteen cycles with respect to
a operation which conditionally branches on the result of the multiplica-
tion. (Of course other operations can occur “in between” such dependent

operations).
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A simplified diagram of a system which exhibits these latencies is

gshown in Figure 2.1, and serves to show the conventions which we will

use to draw pipelines in this thesis.

With these conventions a pipeline

may have fixed delay (“LENGTH=2") or variable delay (“2<LENGTH<

3”). Instructions leave a pipeline in the same order as they entered, unless

explicitly noted otherwise. Whenever the output of a pipeline joins the

input to a pipeline (including itself), a dependency may result (which defines

a latency!).
%
PIPELINE
AATIPLIER
PIPELINE PIPELINE PIPELINE oPERRND (LBGTH-D PIPELINE
> INSTR FETCH > ADR ARITH >- DATA FETCH QELE STORE
(LENGTH=D CLENGTH=4) (LENGTH=D L LENGTHE 18 ne (LENGTH=2
RODER
CLENGTH=2)

Figure 2.1: Simple Pipelined System




8. The S-1 Mark I1A Uniprocessor

In order to additionally motivate the results of this dissertation, a
brief description of an actual computer on which they have been imple-

mented, the S-1 Mark ITA, is appropriate.

The S-1 Mark IIA uniprocessor is the second implementation of the
S-1 architecture [S-1 Project 79). The first implementation, the S-1 Mark I,
has been operational since mid-1978. It is a moderately high performance
scalar processor, with roughly the same throughput as an IBM 370/168.
(The Mark I has a 100 nanosecond cycle time and many of its instructions
can execute in a single cycle.) It is constructed on twelve large wire-wrap
boards containing 5300 ECL-10K chips. Originally, it was planned to build
a multiprocessor containing sixteen Mark I's, but it became clear (at least
to the author and his colleagues in the S-1 Project) that while such a
system might be interesting as a research tool, it would not be the most
cost-effective way to achieve a significant advance in the general-purpose
compute power available for single tasks. Instead, it was decided to build a
much higher performance uniprocessor (the Mark ITA), and to construct a

multiprocessor with sixteen Mark ITAs. The first Mark IIA is scheduled to be
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operational in early 1982. It consists of roughly 25000 ECL 10K and 100K
chips interconnected on 64 wire-wrap boards. The main improvements
implemented in the Mark ITA (relative to the Mark I) are reduced cycle
time, vastly improved arithmetic operation bandwidth, vector operations,

larger caches and (of course) much cleverer arithmetic algorithms.

r—-——-—-—-—"--—-—- - - - 77 1

! IBOX '
l +-
I (

| |

P-SEGLENCER
I INSTRICLION 1- SEQLENGER . |
| QUELE 4
INSTRUCTION DATA CACHE

| DECODE |

( [

l |

| |

I I

! M- SEGUENCER l DTERMAL 1,0
| |

{ l

| |

, SHITCH-SYNCH BOX LOCAL MEMORY ,
L - - _

Figure 3.1: The S-1 Mark IIA Pipeline

The Mark ITA is divided into two main sections: the IBOX and the
ABOX (see Figure 3.1). The IBOX fetches instructions and data and detects
hazards in the instruction stream, while the ABOX performs the arithmetic
and logical operations on the data (taking into account hazards detected
by the IBOX). Both the IBOX and ABOX operations are extensively

microcoded, with a total of eleven sequencers, each controlling one or more
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stages of pipeline, with a separate sequencer to handle cache misses and
memory accesses. Sequencers that control more than one pipeline stage are
nearly always data stationary ([Kogge77]), since control for later pipeline
stages is delayed along with the corresponding data. However, instead
of directly delaying control bits, many Mark IIA sequencers instead delay

addresses to microcode-containing RAMs in later pipeline stages.

3.1 The S-1 Mark ITA TBOX.

The IBOX pipeline is shown in Figure 3.1. Note that there are
separate instruction and data caches. This has the advantage of increasing
overall cache bandwidth, as well as the somewhat less obvious benefit of
allowing specialization of the two memories. In particular, the instruction
cache does “preprocessing” on the instructions at cache miss time (which
slightly increases the total latency of a cache miss, but which greatly
decreases instruction decoding time), while the data cache is optimized for

bandwidth and minimum cache miss execution time.

Although the Mark ITA is capable of executing an instruction every
cycle, extensive conditional branching with its relatively long pipeline
could limit its performance on “real” programs. In general, branching on
pipelined SISD machines presents two problems. The first (common to
both conditional and unconditional branches) is concerned with fetching
the target instructions without delaying the pipeline. Since the Mark IIA
has a large instruction cache (containing pre-decoded instructions), it can

nearly always determine the target instruction and fetch it in a single cycle;
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thus this aspect of branching is not a problem. However, the second prob-
lem is that for conditional branches it is not clear which target is correct!
The Mark IIA predicts a branch dynamically (henceforth called dranch
prediction); if the prediction is incorrect (which is determined at the very
end of the pipeline by the ABOX), all subsequent instructions-in-process
are flushed from earlier stages of the pipeline and the alternate path is
followed. The prediction is based upon the instruction opcode, the most
recent branching behavior of that particular instruction location (a single
bit is kept for each instruction in the instruction cache, so that the recent
branching history of an instruction is forgotten if it is ejected from the

cache), and the direction of the branch.

As described in chapter 2, the latency of arithmetic operations with
respect to address computations is relatively large. To reduce the perfor-
mance degradation that might otherwise occur (since this form of depend-
ency is relatively common), the IBOX predicts the values of many simple
computations (hence the term value prediction). For instance, consider
an integer addition instruction whose operands are in registers (or are con-
stants encoded in the instruction itself) and whose result is to be stored in
a register. On the Mark ITA, the actual addition is done twice: first early in
the address arithmetic segment of the pipeline, and then later in the ABOX.
The result of first addition is remembered as the current (but temporary)
value of the destination register (which allows succeeding instructions to
use the result of the addition in address arithmetic without the time-delay
penalty which would otherwise be imposed) while the ABOX result per-

manently changes the register. The temporary nature of such value predic-
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tions allow the straightforward recovery from incorrectly predicted condi-

tional branches.

The IBOX detects hazards in the instruction stream by using an array
of address comparators. All writes must be “scheduled” by placing the
address of the write destination into the comparator array. All succeeding
instructions can detect hazards by comparing read addresses (of register
or cache reads, both for address arithmetic and operands) to all pending
writes. (Since the pipeline never reorders the instruction stream, the write-
after-write (WAW) hazard is impossible.) When a hazard is detected, the
stage exhibiting the hazard is held until the hazard disappears (i.e., the
result appears!), except for two special (but nonetheless quite common)
cases. First, if the hazard is due to an index register read which has been
value-predicted, then the predicted value is used. Second, if the hazard is
due to an operand read (i.e., data to be sent to the ABOX to be computed
on are unavailable because the ABOX is now computing them) and the read
and write can be conformed (i.e., the ABOX tag types match, as discussed
below and in Chapter 4), then the (incorrect) data are sent to the ABOX
but with extra information sufficient to allow the ABOX to find and use
the correct data (which it is about to compute). Note that no mention
has been made of the hazard of writing into the instruction stream. This
hazard is obviated by a hardware-enforced prohibition against an location
being present in the instruction cache and simultaneously being writeable

in the data cache.

The Operand Queue between the ABOX and IBOX serves to decouple



3. The S-1 Mark ITA Uniprocessor 13

the effects of transient processing slowdowns in either of the two units. The
data cache on the the Mark IIA is capable of reading (and writing) up to
sixteen sequential nine-bit bytes every cycle. This high bandwidth is used
(among other things) to implement vector operations. The Operand Queue
reorders the data from the cache into streams suitable for computation. The
sequential nature of the Mark ITA data cache could have been a problem
for many algorithms. Chapter 7 describes a method to solve some of these

problems.

3.2 The S-1 Mark IA ABOX.

Of the various latencies of an operation, by far the most important
(because it comes into play the most often) is the time from when the data
are available to begin an operation to the time when the operation’s result is
available for use by a later operation. The ABOX pipeline (shown in Figure
3.2) reflects an attempt to minimize this latency. All operations must
pass through at least one of the two functional units (the Adder and the
Multiplier). To reduce latency as low as possible, a small crossbar network
allows the outputs of both functional units to be “wrapped” back into the
inputs of these functional units, thus bypassing the otherwise necessary
store to and fetch from memory operations. Some form of wrapping (also
known as “shortstopping”) is employed on nearly all very high performance

machines, sometimes using a high-speed register file instead of a crossbar.

As will be discussed in greater length in chapter 4, the ABOX uses

different formats for processing data internally and for storage in memory
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Figure 3.2: S-1 Mark IIA ABOX Pipeline

or registers. All internal (to the ABOX) formats are mapped into an internal
bus, and for wrapping to occur the same internal format must be in use.
The test for compatible formats is included in the IBOX hazard detection
circuitry, as mentioned above. (If the formats are not compatible, the IBOX

must wait for the ABOX to write the data back into memory.)

When the IBOX detects that wrapping is necessary, it records along
with the (invalid) operand the fact that the operand is invalid (by setting
the “Wrap” bit) and a number indicating which operation’s result yields
the correct data (the “Wrap Num”). Thus, if we are attempting to use
the result of the previous instruction, Wrap Num will be zero, while for

the second previous instruction the number will be one, etc. Internally,
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the ABOX keeps the last sixteen results it has generated in a RAM (the
Wrap RAM) and also maintains three numbers which it uses to determine
where to find an operand. The three numbers are (1) the number of results
not in the Wrap RAM, (2) the number of results not on the output of the
Multiplier Functional Unit or in the Wrap RAM, and (3) the number of
results not on the output of any functional unit or in the Wrap RAM. By
doing three (parallel) arithmetic comparisons, it can determine the location
of the correct data or that they have not been computed (in which case the

ABOX must wait for previous operations to complete).

All results (meaning changes in the state of the machine) must pass
through the ABOX. Furthermore, in the Mark ITA all such state changes
occur in strictly the same order as in the instruction sequence. This admits
precise snterrupts in a fairly straightforward way, but can have adverse
impact on performance; this is discussed in much greater detail in Chapter

10.

There is one aspect of the Mark IIA control structure about which
the author is inordinately proud (even though he realizes that it is probably
a fairly minor point in a practical sense). Since the Add Functional Unit
delay is two cycles while the Multiplier delay is three cycles, a conflict can
occur (in scalar mode) if a multiply operation is followed immediately by an
add class operation, since both the add and multiply results would need to
be output simultaneously. This was unfortunately out of the question, and
so the initial design detected this case and inserted a null cycle so that the

add operation finished after the multiply. However, it was observed that
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the multiplier was idle during the add operation and thus, if the output of
the adder could be passed into the middle of the multiplier pipeline (which
it could), an add operation preceded by a multiplication could be treated
as a second multiplication. This avoids the null cycle, and also permits the
result of the addition to be available as early as possible for wrapping (since
it first appears on the output of the adder, where it is first available for
wrapping, and then appears on the output of the multiplier on the next

cycle, where it is actually output, and is again available for wrapping).
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4. Data Formats

Data formats most convenient for use by a programmer (or com-
piler), and especially those which pack the maximum information in a com-
puter word, are not always the most convenient for use by the arithmetic
hardware. The arithmetic hardware often greatly benefits (both in speed
and size) by introducing uniformity and redundancy in the representation

that it uses for computation.

4.1 The Distinction between Internal and External Formats.

In the following discussion, we will refer to the format(s) that the
architecture defines (and the user sees) as the ezternal format and the
format(s) that the hardware actually uses as the tnternal format. Figure
4.1 shows a diagram of a CPU where no such distinction is made, while

Figure 4.2 is a CPU where the two formats can be different.

First of all, the internal format must be a superset of the external
format, in the sense that it must allow the efficient implementation of the
operations as defined by the architecture (which by definition are operations

on the external formats).
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ARITHMETIC
PIPELINE

¥

MEMORY

Y

WRAP

Figure 4.1: Block Diagram Of A System Which Uses
The Same Formats For Storage And Computing

Furthermore, it should be possible to convert quickly and easily be-
tween the two classes of formats, since this will be done so often. However,
the whole point of making the formats different is to allow the arithmetic
operations to take place in the shortest possible time. This seeming incon-
sistency disappears if one considers that a short latency time for arithmetic
is important on a pipelined machine precisely when the result of an opera-
tion is used by a “nearby” instruction in the instruction stream. Since
operations on the external format are implemented using the internal for-
mat, we can (by directly connecting different stages of the pipeline) “wrap”®
the needed result from the first place where it is available in the internal
format. Thus conversion is done only when it doesn’t affect the latency of

(nearby) operations in the instruction stream.



4. Data Formats 19

INTERNAL
< T0 <
EXTERNAL
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EXTERNAL HARDWARE | ~
>4 MEMORY | T0
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WRAP

Figure 4.2: Block Diagram Of A System Which Uses
Different Formats For Storage And Computing

4.2 Redundancy in the Internal Representation.

An example of a redundancy that is useful in the internal format
occurs if the external format requires the use of floating-point spectal
symbols. These are bit patterns which provide escapes from the normal
meaning of the floating-point representation chosen. As an example, the S-1
architecture provides the special symbols NAN (not a number), OVF and
MOYF (plus and minus overflow), and UNF and MUNF (plus and minus
underflow). Actually, floating-point zero is implemented as a special symbol

in the Mark ITA hardware, since otherwise a word with all zeros would be
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a very small positive number due to the hidden-bit fraction representation
used in the S-1 architecture. (Since all floating-point numbers in the S-1
architecture have fractions whose magnitude is between 1 and 2, the bit
just to the left of the binary point is redundant, and thus is left out of the

architecturally defined formats.)

On the Mark TIA, these special symbols are encoded in a three-bit
field in the internal format (see Figure 4.4). The value of the three bit
field takes precedence over the value that the rest of the word would
indicate; for instance, if the special symbol is zero then the number is
zero, even if the fraction part of the word is nonzero. This simplifies
many sections of hardware, since they don’t have to worry about the hard-
to-detect special cases — instead, the special cases can be propagated or
generated separately. (There are actually two tags in the Mark ITA internal
bus; the second tag is used only to represent the imaginary part of complex

floating-point numbers.)

In fact, on the Mark IIA the propagation of special symbols is done
with lookup tables. An example of such a table is shown in Figure 4.3.
If a special symbol is generated by the table, then it will be forced into
the special symbol field of the result; otherwise, the correct symbol is
generated from the actual final result (including special symbols for overflow
or underflow generated by this operation). Thus, the basic multiplication
hardware need not worry about the special symbols, except to correctly

detect newly generated error conditions.
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Multiplication (A+B)

A B— MOVF -Y MUNF B UNF Y OVF NAN
VF OvF OVF NAN %) NAN MOVF MOVE NAN
ﬁg OvF XxY UNF B MUNF ~XxY MOVF NAN
MUNF gAN gNF %NF g EUNF MUNF gAN NQN
B
UNF NAN MUNF MUNF P UNF UNF NAN NAN
X MOVE  -XxY MUNF 8 UNF XxY OVE NAN
OvVF MOVF  MODVF NAN 2 NAN DVF OvF NAN
NAN NAN NAN NAN NAN NAN NAN NAN NAN

Figure 4.3: Floating-Point Multiplication Propagation
Table

4.3 Use of Extended Precision in the Internal Representation.

In addition to providing redundancy to speed up the latency of arith-
metic operations, the internal format allows the use of extended precisions

in a natural way.

As an example, the basic computation of a radix-two decimation-
in-time FFT is the decimation-in-time butterfly, which consists of the
computation [Rabiner75]:

procedure BUTTERFLY (C: complex; var A,B : complex);

begin

var T : complex;
T « A + CaB;

B « A - CxB;
AeT;

end;
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Q4 INTEGER FORMAT
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Figure 4.4: S-1 Mark IIA Internal Formats

¥ all of the operations of a butterfly are done in the internal format
using extended precision, we cal reduce the average error in the final
results due to rounding by a factor of v/3 (since two of the three rounding
operations necessary for each result have been eliminated). Even greater
reductions in the final rounding error could be achieved by using higher

radix FFTs implemented in internal precision.

As another example of the value of an extended internal precision,
consider the computation of a double-precision division, A/B, using multi-

plication as the iteration operator (i.e., a Newton iteration):
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Q4 INTEGER FORMAT
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Figure 4.5: S-1 Mark IIA External (Architectural)

Formats

procedure DoublePrecisionDivide (A,B :

begin
var Y : fraction;

Y « SinglePrecisionReciprocate(B};
DoublePrecisionDivide « A x Y x {(2-Y%B);

end;

fraction);

Here we are computing an approximation, Y, to 1/B of slightly over
half the final precision of the result. If YB =1+ ¢ then YB(2 — YB) =
1—eandsoY(2—YB) = (1 —€2)/B. Thusif Y = (1 4+ ¢)/B is half

as accurate as necessary, Y(2 — YB) = (1 — €2)/B is accurate enough.

However, in order to produce a final result with essentially full accuracy,
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we need to do the computations with more accuracy than is available in
the final result (slightly more work is necessary to round perfectly, i.e.,
with an error of one-half the least significant bit). We could compute in
“quad” precision (if such is available), but that would be very wasteful (of
time), since we really only need a few extra bits of precision. The use of
the internal format (rather than defining a new architectural format) solves

this problem.

4.4 A Caution in the Use of the Internal Format.

To minimize latency of operations, it is desirable to wrap using the
internal format when dependencies are detected. There is a temptation to
wrap using the full internal precision in such a case. Unfortunately, this

leads to the following problem:

The code fragment

X 1= XxY;
SuUMl := SUM + X;

if (BUM1 = SUM + X) then print("Terrible errori");

could be compiled into the -1 assembly sequence:

FMULT X=XxY
FADD SUMI1=SUM+X

FADD RTA=SUM+X
SKP.NEQ SUM1,RTA,<Print TERRIBLE ERROR»>
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If the Mark ITA did wrap-around with the full internal precision, the
terrible error could happen since the value of “x” used in the statement
“SUM1 := SUM + X” is internal precision, while the value of “X” in “SuM1 » SUM
+ X" is in external precision and hence the sums could differ. This is clearly
undesirable, and so the hardware must be careful to limit the precision and
range of results being wrapped as a result of dependencies in the instruction

stream.

4.5 Drawbacks in the Use of an Internal Format.

Many computers use data formats designed such that many integer
and floating-point operations (such as comparisons and moves) can be per-
formed with the same instructions. Since the internal formats of integer
and floating-point data will, in general, not be identical, seemingly unnec-
cessary duplicate instructions must be provided so that the correct internal
formats are generated (so that the correct wrapping is possible for both
floating-point and integers). The cost of such “extra” instructions is low,
and furthermore, when special symbols are provided for floating-point, such

separate instructions are necessary in any case.
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5. An Improved Floating-Point
Addition Algorithm

The latency of floating-point addition is of critical importance to
a high-speed “number-crunching” computer. For instance, with limited
resources many linear recurrences take time which is proportional to the

latency of an addition. For example, the sparse k**-order linear recurrence

Ti = @iTi—1 + bizik + ¢y,

needs approximately k2 worth of resources (in this case, the ratio of addition
rate to addition latency) to avoid being limited by the addition latency
time. For many nonlinear recurrences, there is no obvious parallelism and
so the performance of such recurrences is strictly limited by the latency.
Also a large ratio between the pipeline rate and the latency puts a burden
on the programmer to invent better algorithms and the compiler to produce

better code, in order to raise computing efficiency to near its potential.

For these reasons, it is very important to implement a floating-point
adder with mimimal latency that still has high pipelined throughput. This
chapter outlines a method for decreasing the latency of normalized binary

floating-point addition without affecting the pipeline rate.
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To describe the new algorithm, it is useful to first recapitulate the
usual method for computing floating-point additions. We will define a
floating-point number as a pair (e, f), where f is a p-bit fixed-point fraction

of magnitude between 1 and 2, i.e., we have
1<fl<2

The second number of the pair, e, is an integer. The number represented

by this pair is 2¢ X f.

5.1 Current Floating-Point Addition Algorithms.

Given two floating-point numbers, A = (eas,fa) and B =
(eg, fg), we first describe the standard method to compute the normal-
ized floating-point sum [Knuth81, Thornton70, Campbell62, Anderson67a,
Stephenson75]. Figure 5.1 shows a block diagram of a possible hardware
realization of this algorithm. This algorithm {or trivial variants thereof) is

used on the Cray-1, CDC 7600, and the T1 ASC, among others.

l. If e4 < ep set rq « eg — ea, T « B, and epmaz « €g;
if ea > eg set rq « B, rg «— ea - eg, and €maz « €a-

2. Set fimp « fa/27A + fp/27B
3. Set S « | logs(fimp) |

4. Set fresuit * ftm.p 25 and Eresult © 8maz + S

Algorithm 5.1: Normal Floating-Point Addition
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Figure 5.1: Old Floating-Point Addition

Hardware

We are ignoring the details of representation, such as whether signed

magnitude or twos-complement arithmetic is to be done and the size of the

field which contains the exponent, e. These details do not affect the basic

ideas of the algorithm.



5. An Improved Floating-Point Addition Algorithm 29

5.2 A New Floating-Point Addition Algorithm.

We first show that the computation of (f4,e4) 1+ (/5,e8) can be
resolved into one of two cases, each of which can be performed faster than

can the previous algorithm.
Case 1. ley —e2] <1 (ie. e —ex=—1,00r1):

The shift used to implement the division by 2lea—eal jg very small,
in fact is either a zero or one place right shift. Furthermore, the amount of
shift and the larger exponent (given that the assumption of case 1 is valid)
can be determined by looking at the low two bits of both exponents. This

case can be implemented by the sequence

1. 1f eq = ep (mod 4) set Ry « B, Rp « 8, and emar « €43
If e4 = ep + 1 (mod 4) set Ry « 8, Rp « 1, and emaz « €4as
If ea = ep + 3 (mod 4) set Ry « 1, Rp « 0, and e,z « €p;
and we do not care about the case ¢4 = ey -+ 2 (mod 4).

2. Set fymp « fa/2R4 + fp/2F5.
3. Set S « '_ logz(ftmp)_l

4. Set freeuit « ftmp 2= and

€result ¢ €maz t+ S
Algorithm 5.2: Full Postnormalize Shift
Case 2. leg —ep| > 2:

In this case we need an arbitrarily large prealignment right shift. But

at worst, we need to postnormalize by one place. To prove this, observe



5. An Improved Floating-Point Addition Algorithm 30

that

fma.z + fmin/z(e""’_‘mln)

> 1 fmas| — |Fnin/2(emer—emin [
> 1 — 2/2(¢maz—¢min)

>1—1/2

> 1/2,

where e,,,,, and e,,,, are the same as in Algorithm 5.1, and f,,;, and Trmaz
are the corresponding f’s. Thus, the result of the addition can never be
so small as to need more than a one-place left shift. Also the sum can be
never be larger than four and thus requires at most a one-place right shift.
This case can be performed by the sequence

1. If e4 < ep set Ry « €8 — es, Rp « B, and epor « ep;
if ea > ep set Ry « 8, Rp « e4 - ep, and epq, « ey

2. Set Stmp « fA/2RA + fB/2RB'

3. If ftmp > 2 set Sresuit « ftm.p/z and epepuit « €maz + 1,
If2 > ftm.p = 1 set Sresult © ftm.p and e,qpult ¢~ €maz.,
If ftmp < 1 set freoun « 2ftmp and e,epult ¢ €mazr — 1,

Algorithm 5.3: Full Alignment Shift

Since these two cases are mutually exclusive, we can build hardware
to execute both simultaneously (see Figure 5.2). Thus, on any given ex-
ecution path, there is one big shift and one small shift; this compares to
two big shifts required for the normal algorithm. Furthermore, the “Full
Postnormalize Shift” case in general has the longest delay, and the fact
that only the low two bits of both e 4 and ep need to be examined improves

the latency of this path.
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Figure 5.2: New Floating-Point Addition Hardware

The fact that floating-point addition can be classified into two
mutually exclusive cases as described above seems to have been part of
computer folklore for some time, although no one seems to have appreciated
its value for a hardware implementation. The first mention of it that the
author has been able to find is [Sweeney65], who used it to explain statis-
tical observations of floating-point addition shift behaviour. W. Kahan has
related that the idea has been used in software written by his group at
Berkeley [personal communication] and [Field69] also pointed out its use
in software floating-point implementations. Of course, many hardware im-
plementations of floating-point addition which spend variable amounts of

time shifting have benefitted (perhaps unwittingly) from this fact.
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Figure 5.3: Simultaneous Sums and Differences

5.3 Simultaneous Floating-Point Adds and Subtracts.

Many algorithms (such as the FFT) require the generation of both
A+ B and A— B. The algorithm given in this paper may be extended to
allow the simultaneous calculation of the floating-point sum and difference
for much less than twice the hardware cost of either. First, note that in
case 1 above a full postnormalization shift is needed only if the signs of f4
and fp are different. Now if we add a “complementor” to the B-leg input
of the “Full Postnormalize Shift” path and complement B if f4 and fg had
the same sign, we can ensure that if either the A + B or A — B required
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a full postnormization shift, it indeed will be done. The “Full Alignment
Shift” path must be partially duplicated in that separate data paths are
needed after the shifters (see Figure 5.3). Since the “Full Postnormalize
Shift” circuit both contains more logic and is the critical path, this is of
minor importance (in that it has a small effect on the overall logic count

and no effect on the circuit speed).
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6. Evaluation Of Elementary
Functions

Consider the well-known [Flynn70, Rabinowitz61, Shaham72] tech-
nique for evaluating 1/z by generating an initial approximation, ag, for
1/z using a table-lookup on the high bits of z, and then using the iteration
@i+ 1 = @;(2 — a;z) until the desired accuracy is reached. If we let z be
the high bits of 2 used for the table-lookup and let y — 2z — z, then the
combination of the table-lookup and the first iteration is equivalent to ex-
panding the Taylor series for 1/z = 1/(z + y) about the initial point of
approximation, z, i.e.

1
ai =Go(2—aoz) = ; — x—yz-,

where ag = 1/z is the initial approximation. Furthermore, if we compute
1/z2 by using table-lookup on z (which can be done in parallel with the
table-lookup of 1/z), with one multiplication (y(1/z2)) we have doubled
the precision of our approximation (1/z). We shall show that use of fur-
ther terms of the Taylor series leads to a fast method for evaluating many
functions, whereby in one multiplication time (during which two parallel
multiplications occur), we can triple the precision of the table-lookup ap-

proximation.
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6.1 Mathematics of the Approximation Technique.

We wish to compute a suitable function, f(2), to p-bits of accuracy.
More precisely, over some limited range of the argument z, we would like
to compute an approximation f(2), such that |f(z) — f(2)] < 1/2?+1 for

all z in the restricted range.

For simplicity, assume that 0 < z < 1 is the range in which we are
interested. Thus z is a fixed-point fraction with p, bits. We will break 2
into two pieces, z and y, where £ = | 22P=|/2P= and y = (2 — z)2P=, so that
z =z +y/2P=. It should be clear that 0 < z < 1 and 0 < y < 1 and that
z and y are fixed point fractions with p; and p, — p, bits, respectively. We
are going to make a number of approximations to £ and y which use various
numbers of the leading bits of each. We will use the notation p, and py,

for the number of bits of z or y used in the i** term of the approximation.

We have (using the Taylor expansion for f at z)

f(2) = fz+ )

9P

= [f(z) (1a)
——f (z) (18)
( )2f"(z)/2' (1¢)

+ ( )sf'"(Z)/3' (1d)

+ ( )"f""(-'c + B)/4, (le)

where 0 < g < y/2P=,
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We will analyze the approximation to f of (see Figure 6.1)

f(2) =round(f(z),p + 6)

+ 2—2; round (f'(z),p + 6 — p,)

truncr(y, py.) 2
—~+ round ( . ya),p—i—G

2Pz

X round(in—(—@,P +7— sz)

2!
truncr(y, py,)
2Pz

~+ round (R(truncr(z, Pz,),

1p+7—3pz)

where

round(z, g) = | 227 -+ 1/2]/29,
(i.e., normal rounding to g-bits)

truncr(z, g) = (|229] 4+ 1/2)/27
(also known as von Neumann rounding or jamming) and

R(u, v) = (v/2P=)* " (u) /3! + (v/2P=)* "' (u)/4!.

36

(2a)
(20)

(2¢)

(2d)

Of these four terms constituting the desired approximation, note that (2a)

and (2d) consist of table-lookups, (2b) of a table-lookup followed by a

multiplication, and (2c) of two table-lookups followed by a multiplication.

Note also that all the table-lookups may be performed in parallel, as may

the two multiplications.

Let us assume that the general term of the Taylor series for f satisfies

7"(@)| < n
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for 0 < 2 < 1 and n > 0. In addition, let us choose p; such that it
is technologically feasible to perform fast table lookups on z (e.g., about
10-16 bits, using 1981 technology). The values of the terms f(z), f'(z) and
f"(z) thus can be obtained directly from ROM or RAM. (This implies that
Pz, = Pz, = Pz, = Pz.) Also note that p,, = p, = p, — p:, since we use
the full precision of y in term (2b). This is not strictly necessary, since we
could approximate y with enough of its leading bits {(at least p + 7 — p,)

to make the error of truncation small.

(612x 36D

Teble of
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(512« 27x8)

X<@:PX-1> Teble of
X% bite FO0 (3638
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(33 bite) Fon,
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Y Y<@:PY-12 2C
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(2048x 16)
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2
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4-INPUT | reo
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__2o]
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(6 bite)

Figure 6.1: Block Diagram of Taylor Series
Approximation Hardware
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The term {y/27<)? can be obtained by table lookup on the high p,,
bits of y, if 2p; + py, > p + 2. To see this, note that the approximation

used in the table lookup is

2Pva 1
le J+2=y+ a

9Pyg 9Py’

where —1/2 < a < 1/2. The error involved in using this to approximate

(y/27=)? is
2
( y )2_ vtz 1
2?: 2?: - 22Pz 2PII2 22p"2

< 1 1
T 92patpy,  92Pet2py,+2

2ay  o?

Term (2d) is found by table lookup on the high bits of z and y. We
will use the high p., and p,, bits of x and y. Using the same approach as
before, we approximate z /s z-47/2P+» and y /s y+\ /2P, where —1/2 <
7 < 1/2 and —1/2 < X\ < 1/2. Then the error in this approxzimation to

term (2d) will be (leaving out intermediate steps)

y -+ gé,;)sf"'(w s

R(Il y) - ( 9P 3!

v+ 325\ Mz + )
T\ 2rs 4!

2 3/2
- 23P=+P=3 23P=+p’3

(rmrmitorns) * Arramairr)
94pz-+min(pey,pyg) 93pz+2min(pey,py,)

We now have all of the pieces to find the total error in our approxima-

tion to (1). The five rounding errors sum to at most 1/2P+5. Thus the error
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in (2¢) can be made close to 1/2P%2 by making 2p, + py, = p + 2. We
can make the error in (2d) be less than 7/2P %5 if 3p, + p;, > p+ 4 and
3p;+py, > p+4. Furthermore, we ignore a number of smaller error terms
because they make little or essentially no contribution to the total error.
Summing these errors gives a total maximum error less than 1/27%1, as
desired. Note that this is the maximum error — the average error will tend

to be much less, due to cancellation effects.

Summarizing the foregoing assumptions, we have

1) < n, (3a)
2pz +py, 2 P+ 2, (3b)
3pz +py, > p+4, (3¢)
3p: + P2y, 2 P+ 4, (3d)

together with technology constraints on the choice of p:, py., pz, and py,.

We shall now select p;, py., pz, and p,, to minimize the total number
of bits in the tables. There are five tables used, and the sum of their sizes

(in order of their appearance in (2)) is

2p¢(p + 6) + zpz(p +6 —P:l:) + 2“2(? +6 — 2pz)
+ 2P=(p + 7 — 2p,) + 2P=sFPus(p 4+ 7 — 3p,).
Clearly, we can let p,, = p+2—2p, and p;, = p,, = p+ 5— 3p, since
these are the minimum values which satisfy the constraints. Thus we must
minimize
2P=(3p 4- 19 — 3p,) + 2P T2 %P=(p + 6 — 2p,)
+ 2210 Oe(p 47— 2p,)
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as a function of p,. Without proof, we state the result that the minimum
occurs at p, 4 p/3, which satisfies the constraints if p, > 3. The table
involving only bits of y need not be duplicated when using this technique
for evaluating more than one function; this drives the optimum value of p.
even lower, since the y2 table is common to all of the functions. The total

table size (in bits) at p, = p/3 is approximately
28(3p + 45) + 7000
or if k functions are implemented:

25((2k + 1)p + 20k + 25) + 7000k.

6.2 Some Functions Which Satisfy The Constraints.

Table 6.1 lists some common functions which satisfy the necessary
conditions developed above. The examples assume a radix-2 floating-point
format. Since the dynamic range of the result must be limited to maintain
relative accuracy (the dynamic range is limited essentially to 2), we are
forced in some cases to compute another function which can easily be
transformed to the correct result. In fact, the correct way to regard this
method is to consider it a technique for computing a fixed-point function of
a fixed-point number. To maintain relative precision in floating-point may
involve additional work. This is why we compute sin(z)/z instead of sin(z)
(since sin has a zero at zero). Also note that 1 — erf(z) < we—2"/(22) for

z > 1. Thus for z > 8, we have erf(z) = 1 to within 2792 or 10—28_ Also,
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the derivatives of erf(z) are so small when z > 1 that much coarser tables
can be used than for the range 0 < z < 1. The tables used in computing
2/z and \/z are double-sized, since in computing 2/z we need to look at the
sign of z and in computing v/z we must examine the low exponent bit, i.e.,

we use different approximations, depending upon whether the exponent is

ase function Domain  Example of use

[ 1f(1), 0<5<1)
| ] a—asa—a q<i<?)
sin(%£)/z 0<2<1 sin(z) = —is) (2<i<3)
| —9f0—9), <
where ¢ = 22 mgil ;1)1{;(_17'=2%1 m(c?dfi 7<)
log,(2) 1<2<2 logy(2°m) = e+ f(m)
2/z 1< |2 <2 1/2°m =2"¢"1f(m)

vz 1< 2<4 V22eatey = 2 f(202m)

2* 0<z<1 2% =2lelf(z—|z))
( f(D)/z—%, (z2<—1)
arctan(2)/z 0<2<1 arctanz =T —zf(2), (—1<2z<0)
zf(2), ©<z<1)
L L —f(L)/e, 1L 2)
([ —L (z < —8)

—zf(2), (—8< 2z<0)
zf(2), (0< 2<8)
. 1, (8 < Z)

erf(z)/z 0<2<8 erfz=:"

Table 6.1
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odd or even [Fike68].

6.3 Practical Implementation.

The technique just described has been implemented in the S-1 Mark
ITA processor [S-1 Project 79] to evaluate elementary functions in single-
precision floating-point (which has a sign bit, 9 exponent bits, a hidden
fraction bit, and 26 bits of fraction). The numbers in parenthesis (in
Figure 6.1) are the actual sizes of the tables used. The Taylor series is
actually evaluated to 29 bits of accuracy and then rounded to 27 bits.
This implies that the functions satisfy an equation of the form f(z) =
J{z)(1+¢€), where ¢ < 0.62/227. All of the approximations used satisfy the
correct monotonicity properties (partly as a consequence of evaluating to
extra precision before rounding). In addition, some of the functions satisfy
necessary special properties, such as |sin] < 1. Evaluation to extra precision
is also valuable for computing double-precision reciprocation and square-
root. The S-1 double-precision floating-point format has 57 fraction bits.
Since we have an approximation which has more than one-half of the desired

precision, one Newton iteration will suffice to finish the approximation.

All of the table lookups are done in the first stage of the multiplier
functional unit, with the normal operation of the succeeding stages of the
multipier being delayed by 25 nanoseconds (to provide the time needed for
the table look-ups). The multiplier has four 18 x 36 multipliers which can
be reconfigured as two 36 x 36 multipliers. The subsequent pipe stages

(accumulate, normalize, round and normalize) are shared by the floating-
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point multiply and elementary function evaluation functional units. The
multiplier has a beginning-to-end latency (time duration from input to
output) of either 125 or 150 nanoseconds, depending on how it is being
used. This arrangement readily supports the pipelined evaluation of 1/z,
vz, log, z, and 2% at 25 nanoseconds per datum and y/z, Inz, logz, €?,

arctan 2, sin z, cos 2 at 50 nanoseconds per datum.

6.4 Rounding.

There is a minor problem with this form of function evalution, in that
it doesn’t round “perfectly”, i.e., it doesn’t allow rounding of the nearest
representable floating point number to the exact result. (Here “perfect”
rounding means that the error in the result is less than or equal to one-half
the least significant bit.) Of the functions discussed above, reciprocation
and division (and occasionally square root) are the only ones for which
serious attempts are ever made to do “perfect” rounding. The error due to
the approximate method for elementary function evaluation presented here
can be considered as additional rounding error, and can be made as small
as desired by making p as large as necessary before rounding. This type
of error has been extensively studied by numerical analysts, and has been
found to be quite acceptable where function evaluation speed is important.
There is no a priori limit known to the precision to which one might have
to evaluate sine, cosine, logarithm, exponential and arctangent in order to
round correctly in these cases [Kahan81]. Of course, for a fizxed size word,

one could determine the precision needed to round each value ahead of
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time and so place a bound on the precision required to correctly to round
any value. This is clearly not worth the small increment in precision that it
actually yields. For division, reciprocation, and square root, it is interesting
to note that in order to round “perfectly” to p bits, it is sufficient to evaluate

the result to 2p bits before rounding.
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7. Parallel Transposition and Bit-
Address-Reversing

Rapid execution of matrix transposition and bit-address-reversing
are two important capabilities needed by a high-performance digital com-
puter. Matrix transposition {or at least parallel access to both rows and
columns of a matrix) must be done in the course of executing many linear
equation algorithms, while bit-address-reversing is required to unscramble
(or scramble) the locations of the data of the standard in-place Cooley-

Tukey Fast Fourier Transform (FFT).

The use of memory interleaving to increase bandwidth is nearly
universal on high-speed computing machines. However, with standard
data representations of matrices, it is difficult to use such interleaving
effectively to accomplish matrix transposition. Skewing techniques have
been described [Budnik71,Kuck78,Lawrie75] to support the more efficient
use of such interleaved memories, but these techniques have not enjoyed
widespread acceptance by the computer-using community or by compiler

writers.

Using data rotators and individually addressed small memories (all
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of the same size as the degree of interleaving), we show how to implement
matrix transpose and bit-address-reverse, starting and ending with stand-
ard representations of matrices and arrays. The structure of this hardware
is such that it can also quite usefully act as a queue for buffering data

between memory and an execution unit (which, in fact, has been done on

the S-1 Mark IIA).

7.1 The Algorithm.

The basic idea is taken directly from data skewing methods. With
normal storage representation and N-way interleaved memory, N words
of any row can be read in parallel (assuming row major matrix storage).
By reading N such N-word sequences and storing them in the skewed
representation in a special memory, it is then possible to read from the
special memory N words from any row or column. In particular, the
implementation of transpose developed in this research consists of reading
out in parallel the columns of the input (sub-)matrix and storing them back
into memory as the rows of the output (sub-)matrix. A similar technique
may be used to perform the bit-address-reversing required by the standard
FFT algorithm.

To better explain how the method works, some examples may be
useful. Figure 7.1 is the block diagram of the hardware implementation

(for N = 4) which we will use in the examples.
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—Ago—| [—Aoo— Agp — *
—Ap1—| —Ag— Apy —
—Ap2—|  —Ag— Aoz —
—Aga—| —Aos— Aos —
Rotator Scratchpad Rotator
Figure 7.2: Reading The Subvector, Step 1
—A—| A~ Ag Ais "
—An—| A A Ao - '
—Aj—| —A— Ay Aoz d I
—Ay3— Aga— Aj Aos — N
Rotator Scratchpad Rotator
Figure 7.3: Reading The Subvector, Step 2
—A20—|  —Az—|  Ag A2z Ajs R
—An~ A A Ao Aas 4 b
—Agx—| Az~ Az Ay Ap2 B
—Agz— Ay — Az Aj2 Aps SN [ N
Rotator Scratchpad Rotator

Figure 7.4: Reading The Subvector, Step 3
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—Asz0—|  —Asi—|  App A3z A2 Ajs ? ’
—As1—| A Ajp Aoy A3z Aas ’ '
—As2—|  —Ass—| Ao Ay Aoz Ass # +
—Azz—| Az~ Az0 Az Aj2 Ags »
Rotator Scratchpad Rotator
Figure 7.5: Reading The Subvector, Step 4
— M Ago Aax Az Az Aoo—| [—Aoo—
e A Aoy Az Aza Ao A~
+ — Az Ay Ag2 Ass A20—| A0
— s Azo A2y Ar2 Aga Asg—| As0—
Rotator Scratchpad Rotator
Figure 7.6: Writing The Subvector, Step 1
— ~ Az Az Ajs Az Ao1—
—* ¥ Aoy As2 Az HAgi—| A
— + Ay Aoz Azz A Az~
—_— N Azy Ao Aoz |—Agz—| |As—
Rotator Scratchpad Rotator

Figure 7.7: Writing The Subvector, Step 2



7. Paralle]l Transposition and Bit-Address-Reversing 50
’ ’ Ao Az Azxp—| |—Ap2—
—_— Ago Azz [—As2—| [A—
+ » Aoz Azs Ao2—| A2
’ > A2 Aps Ay~  Aazx—
Rotator Scratchpad Rotator
Figure 7.8: Writing The Subvector, Step 3
— + A;s A1z [—Aga—
— ’ Azs A23—| A1~
> —~+ A3z |—~Aaz—| [—Azs—
— + Aoz | —-Ags—| |—Asz—
Rotator Scratchpad Rotator

7.1.2 Example: Bit-Address-Reversing.

Figure 7.9: Writing The Subvector, Step 4

As a second example, suppose instead that we have an one-

dimensional array B;, 0 < ¢ < 2P — 1, and that we would like to “bit-

address-reverse” B, i.e. we would like form a new array, C;, such that C; =

Byitreverse(s,p) (The function bitreverse(, p) reverses the binary digits of a

p-bit number ¢, i.e., if £ = #p¢;...4,_; is the binary representation of ¢, then

the binary representation of bitreverse(t, p) is 1, ;...81%9. See [Polge74] or

[Rabiner75] for a derivation of the need for bit-reveral in the computation



7. Parallel Transposition and Bit-Address-Reversing 51

of the Fast Fourier Transform.) Furthermore, we want to use the same
memory locations for both B and C, so that the transformation is done
“in-place”. On a computer with non-interieaved memory, this can be done
in a straightforward fashion by a program of the form

for 1 := @ step 1 until 2N-1 do
if 1 > BITREVERSE(I,N) then BIIl] « BIBITREVERSE(I,N}];

Here “»” is the exchange operator and the function “BITREVERSE (1,N}”
returns the bit reverse of the low N bits of 7. On a computer with
interleaved memory, such a simple loop doesn’t work well, since either the
memory reads or writes can’t be sequential, and thus the algorithm is unable

to effectively use the parallelism of the memory.

Let us resolve a subscript of the array, B;x;, into a concatenation of
three fields: ¢ and j are two-bit fields (for N = 4; in general, they would be
k bit fields for N = 2*), and X is the middle p — 4 bits of the subscript.
Consider all possible array elements whose middle bits of the subscript are
X (ie, Bix;j, 0 < ¢ < 3and 0 < ¢ < 3) and those array elements whose
middle bits of the subscript are Y = bitreverse(X). Then, the desired
transformation is a one-to-one mapping between these two sets. Thus we
can replace the single element exchange in the simple loop above with a
set exchange, where the sets are read and written in parallel. Figure 7.10
through Figure 7.17 illustrate the fetch and bit-address-reveral of B;x;. It
is clear how the same operation for Byy ; can be overlapped so that the store
of the bit-address-reversed B;x; can be made directly into the locations just

read during the bit-address-reversal of By ;.
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—Booxoo—| —Booxoo—
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Rotator
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Rotator
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Booxoo i
Booxo1 o
Boox10 4
Boox11 »
Scratchpad Rotator
Figure 7.10: Reading The Subvector, Step 1
Booxoo Boix1o o
Booxo1 Boix11 i{ I
Boixoo Boox10 —
Boixo1 Boox11 > »
Scratchpad Rotator
Figure 7.11: Reading The Subvector, Step 2
Booxoo Boix1o Bioxi: i I
Bioxoo Booxo1 Boixni [ [—
Boixoo Bioxo: Booxio + +
Boixo1 Bioxio Booxia N
Scratchpad Rotator

—Bijoxoo—*| [—Biox11—

—Bioxo1—*| [—Bioxoo—

—Bjox10—| Bioxo1—

—Bjox11— Bioxi10—
Rotator

Figure 7.12: Reading The Subvector, Step 3
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—Biixoo—| [~Buixo1—| Booxoo Biixo: DBoixio Bioxii I
—Buxoi—| [—Biixi0—| Bioxoo Booxor Biixio Boix O
—Biix10—*| Biix11—| Boixoo Bioxo:1 Booxio Biixii I
—Biix11—| FHBiixoo—| Biixoo Boixoi1 Bioxio Booxii » —
Rotator Scratchpad Rotator
Figure 7.13: Reading The Subvector, Step 4
’ " Bpoxoo Biixo: Boixio Bioxii [~Booxoo—| —Booxoo—
— —*| Bioxoo Booxo:1 Biixio Boixii [~Bioxoeo—| [~Bioxoo—
» *| Boixoo Bioxoi1 Booxio Biixii —Boixoo—| —Boixoo—
— sl Biixoo Boixo: Bioxio Booxii —Bjixoo—! Biixoo—
Rotator Scratchpad Rotator
Figure 7.14: Writing The Subvector, Step 1
’ — Biixor Boixio Bioxii [~Boixie— Boox10—
— + Booxo:1 Biixio Boixii [~Buxio—=| —Bioxio—
— + Bioxo1 Booxio Biixii FBooxio—| [—Boixio—
5 ) Bojxo1 Bioxio Booxii —Bjoxi0—| HBiixio—
Rotator Scratchpad Rotator

Figure 7.15: Writing The Subvector, Step 2
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+ - Biixo1 Biox1, FBuxoi—| —Booxo1—
—— — Booxo1 Boix11 —Booxo1—*| (—Bioxo1—
N » Bioxo1 Biix11 —Bioxo1—| [~Boixoi—
N N Boixo1 Boox11 }—-Bgixo1— LBuxm—'
Rotator Scratchpad Rotator
Figure 7.16: Writing The Subvector, Step 3
> > Biox11 FBiox11— —Boox 11—
> —~ Boix11 —Boixii—| [—Bioxi1—
> - Biuix11 HBuxu—| Boixii—
N . Boox11 |-Bgox11—| HBiixii—
Rotator Scratchpad Rotator

7.2 Use Of The Technique.

Figure 7.17: Writing The Subvector, Step 4

Unless the matrices of interest are square, it is difficult to perform

parallel transpositions in-place. Many applications algorithms only need to

be able to access both rows and columns of the matrix in parallel, rather

than requiring the explicit transposition to actually exist. The technique

described in this dissertation can be used to provide parallel access to the

columns of a row-stored matrix without actually forming its transpose;

however, while supplying the data from one column, it must also provide
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the corresponding entries of the N — 1 other columns. By using the data
of these “extra” columns immediately, rather than throwing them away,

effectively parallel access to both rows and columns can be attained.

The ADI [Young73| algorithm offers a good example of the use of
the transpose hardware. Without going into excessive detail, an ADI sweep
consists of two passes over two-dimensional matrices. The first pass is a

recurrence in the row direction, i.e., of the form
X[r, )= f(X[r—1,¢),Y[r—1,c]),
while the second is a recurrence in the column direction,
X]r,c] = f(X|[r,e —1],Y]|r,c —1]).

On parallel machines (either vector or array), it is advantageous to be able
to access slices in the non-recurrence direction (i.e., columns for the first
pass and rows for the second), since these operations on these slices are
independent. However, with normal matrix representation and interleaved
memory, either the column accesses or the row accesses cannot be made in
parallel; the total ADI processing time is thereby substantially increased.
With the hardware described above, one can approach the problem in one
of two ways: either perform a full transposition after each pass, or else just
perform local transpositions, as will be detailed below. The matrices used
in ADI are frequently square, and in this case the full transpositions can be
done in-place; however, this involves extra data movement and, in cached
memory systems, inefficient use of the cache. The inefficiency of doing a

full transpose depends upon the ratio of the arithmetic pipeline rate to the
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rate of the cache memory; for the S-1 Mark IIA, in which the ratio is unity,
performing a full transpose costs a factor of two more than if the transpose

and computation can be done together “on the fly”.

Let us assume that the data is stored in row-major form (i.e., with the
rows in sequential locations). The column recurrence is straightforward to
implement (since the parallel slices are in the row direction). To implement
the row recurrence pass, we need to impose conditions on the latency times
of the execution unit. Let T; be the latency of computing f. (Here the
latency is the total elapsed time from when the computation of f begins to
when the result of f is available to begin the next computation; note that
this may or may not include the full memory access and data alignment
time, depending upon when the system has any sort of “short-stop” or
“wrap-around” data paths.) Let T, be the the rate of computation of
f for separate data values (i.e., the pipeline time for vector machines or
the execution time divided by the number of execution units for an array
machine). With the assumption that N*T, > T;, we can implement the row
recurrence pass of ADI by reading IV sequential N-word column slices (in N
memory cycles), then applying f (in parallel) to the current N-word result
slice and the first column slice (since there are N different recurrences),
and then to the result of the application and the second column slice, etc.
Since we have assumed that N*T, > T;, we know that we will not have
to wait for any previous result slice before beginning the next step of the

recurrence.
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7.3 Use Of The Skewing Memory As A Buffer.

The hardware configuration just described for transposing is ideally
suited for buffering between the operand fetch unit of a CPU and its
arithmetic unit. The memory used to store the skewed submatrices may also
be used as a queue to allow the operand fetch unit to continue operations
even though the arithmetic unit may be busy doing a lengthy computation,
or to allow the arithmetic unit to catch up after such a period while the
operand fetch unit is performing overhead functions unique to it (handling
cache misses, complicated addressing modes, waiting for pipeline interlocks,
etc.). This has been done on the Mark IIA in the Operand Queue (see Figure
3.1).
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8. Pipelining Quicksort

The straightforward implementation of sorting algorithms on
pipelined machines usually leads to very inefficient use of the hardware. For
instance, the usual algorithm for the inner loop of Quicksort [Sedgewick75,
Knuth73] is

{x begin partitioning inner loop x)
while true do
begin
{x1%) do h « h-1 until Alhl < P;
(x2x) do | « I+1 until AlI]l = P;
exitif hglg

Alll e Alh]
end;

The two loops marked with (*1*) and (*2*) would be compiled for

the S-1 architecture into

L1: SUB H=H,1
SKP.GEQ A(H),P,L1

L2: ADD L=L,1
SKP.LSS A(L),P,L2

Now assuming that the original data of the array A were randomly or-

dered, the probability that either of the jumps will branch in the above two
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loops is one-half. As a class, pipelined machines take several different ap-
proaches to such unpredictable loops [Rau77, Kogge81a, Holgate80]. Most

such approaches fit into one of three categories.

The first (and simplest) strategy is to simply stop further execution
until the correct branch path has been determined. (Cray-1, CDC-7600)

The second strategy is to attempt to predict which one of the two
paths will eventually be taken, and then to continue down that path as if
the branch were unconditional. At some point in the pipeline, the correct
path of the branch will be determined and then checked against the path
previously chosen. If the earlier choice between the two paths was incorrect,
the pipeline is backed up (i.e., the instructions executed down the wrong
path are undone) and proceeding down the other, now-guaranteed-correct
path is commenced. (Manchester MU-5 [Morris79], S-1 Mark I and Mark
ITA, IBM 3033)

The third general strategy involves attempting to follow both paths.
This usually involves fetching instructions from both paths until the correct
course of the branch can be determined. In actual implementions, the
difference between the second and third alternative often blurs, since an

attempt may be made to fetch down both paths, but primarily from one.

Clearly the first works best with a very short pipeline, while the
second works well as long as the prediction mechanism usually succeeds
([Smith81]). Although the third approach would seem to solve the problem,
it works poorly if one or both of the paths being followed contain additional
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conditional branches. In order to be able to eventually have followed the
correct path, all paths must be evaluated. The process which does this
can easily get out of hand, since for any reasonable hardware implementa-
tion only a limited number of paths (usually one or two) can be followed

concurrently.

Unfortunately, none of the above strategies work well for the
Quicksort inner loop, since the branches are inherently unpredictable and
are quite closely spaced. (For instance, see p. 229 of [Morris79] for a
timing of Quicksort on the MU-5.) Furthermore, many pipelined machines
gain much of their relatively high performance by fetching vectors (ordered
streams of data) from memory, which feature is not at all useful with the

straightforward implemention of the Quicksort inner loop.

Methods of using vector instructions for sorting have been proposed,
and at least one has been implemented on the Cray-1 [Sedgewick78 and
Kulsrud78], resulting in the fastest sorting program known to the author.
They all are somewhat complex and none allow the inner loop to execute

at the memory bandwidth-limited rate.

We now demonstrate a parallel pipelined structure which quite
effectively implements the Quicksort inner loop; moreover, minimal

hardware is required to implement this structure.

The read address generation hardware in Figure 8.1 has two pointers,
L, and H,, corresponding to 1 and h of the Quicksort program. These
pointers initially point to the beginning and end of the array. The read-
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address hardware initially reads 7 + S words from either end of the array,
using either the L, or H, pointer (it doesn’t matter which), modifying the
pointers appropriately. After the T + S cycles, the read-address hardware
switches to a mode wherein it uses the L, or H, pointer, depending upon a
single-bit value taken from a queue between the data comparator and the
read-address hardware. S -+ 1 or more cycles after the comparison takes
place (and thus after the reading operation which is dependent upon the
result of the compare occurs), the data are written into the location pointed
to by L, or H, of the write-address hardware (which is also modified
appropriately). Since the write to a given location occurs after the fetch
from that location, we have ensured that L, < L, and H, < H,, thus
asguring we don’t write over input data which hasn’t been processed. The
algorithm terminates after L, > H, (or, equivalently, the same number of

read cycles as the size of the array have occurred).

The algorithm just specified (Pipelined Quicksort 1) works well for
pipelined systems in which memory writes and reads have the same cost.
However, consider a system in which a memory write involves both a read
and a write cycle. This could occur, for instance, on a system with a cache,
where the cache is implemented such that a write requires a quasi-read cycle
to ensure that the location to be written is indeed in the cache. On such
a system, it is very advantageous to be able to write back into the same

locations as were originally read (and in the same order).

We now describe a modified algorithm, Pipelined Quicksort 2, for

such a cached computer system (see Figure 8.2). In this algorithm, there is
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MEMORY PIFELINE PIPELINE
COMPRRE
> >~ TQ YO K > BQ >
WRITE RERD LENGTH = T LENGTH = B
AR ADR
N N
\
REFD PIPELINE
ADDRESS 5Q <
GEN
LENGTH = §
P
\RITE IPELINE
RDDRESS 24 BG <&
GEN
LENGTH = B

Figure 8.1: Pipelined Quicksort 1

only one address generator, the read-address hardware of Figure 8.2, and
the write address is simply a queue of delayed addresses from the read-
address generator. The pointers in the address hardware are initialized as
before. The first 7 -4 S cycles again are reads from, say, the low end of the
array, with no associated writes. As before, the read-address hardware also
proceeds into the same mode of looking at bits coming from the comparator
and reading from the array, using pointer H, if the bit is one and from L,

if zero. Now, however, writes are set up (i.e., the addresses are placed in

DQ) for all reads.

Since each write corresponds to the result of a compare, we are

assured of having data (in the correct order) to be written, simply by using
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MEMORY PIPELINE PIPELINE
> 1Q > i > Ba
WRITE REFD LENGTH = T LENGTH = B
ADR ADR
F A~
1
QUELE PIPELINE
DQ < PDORESS sQ <
BSLENGTH( D GEN LENGTH = S

Figure 8.2: Pipelined Quicksort 2

the original data stream. The only requirement is that b > s, which is
necessary to ensure that we can hold the data long enough to have found

locations in which to put it.

After N cycles, we have read the entire array (since we are reading
one word every cycle). We have only scheduled N — T — S writes and so
there are 74 S “extra” operands in the pipeline with (as yet) no place to be
written. To find somewhere to put these data, we now put the read-address
hardware into a new mode. The L, pointer is first reset to the origin of the
array (without modifying the H, pointer). We now continue to examine
bits from the comparator, using the L, or H, pointer, depending upon the

value of the bit. However, the action we take is slightly different than

Y
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before. When using the L, pointer, we are only reading in order to set up
a write; when using the H, pointer, we always set up the write and only
do the read if H, > T + S. This means that we are only willing to read
data that have already been wri;;ten on the first pass. The read-address
hardware then proceeds in this manner until TQ is empty, at which time

it is free to proceed to other work.

The following is a trace of this algorithm for ten points, with s=2,
t=4, b=3, and a partitioning key of 14. The |’s mark the location of
L, and H,, and a circled value means that a write is currently scheduled
to that location. TQ, BQ, and SQ are the contents of the corresponding
pipelines in Figure 8.2.

Cucle Array Contents of Pipelines

1} |26 73 61 32 11 19 7 71 B4 5] [tql
[bql
[sql

1 j286 73 61 3211 19 7 71 64 5] [tq 28]
[bqgl
(sql

2 28] 7381 3211 18 7 7164 5] [tg 28 73]
{bgl
[sq]

3 20 73|61 3211 19 7 71 64 5 [tg 28 73 61]
[bq]
[sq]

4 28 73 61 |32 11 139 7 71 B84 5] [tqg 28 73 B1 321
[bgl
[sq]

5 20 73 61 32|11 19 7 71 64 5| [tg 73 B1 32 111
[bq 201
{sq 11

B 20 7361 321119 771 64 5| [tqg 61 32 11 131
[bg 28 73]
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14
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16
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20

20

28

28

1@:’|73 61

11| 73 61

11

11

11

73 681 3211

73 61 32 11

73 61 3211

73 61 3211
32 11

32 11]

32 11|

5|61 @64
5@1 171 84

5 7]}71 64

19 |32 61 73 20

32 61 73 28

139

13

32 61 73 28

32 61 73 28

32 61 73 20

32 61 73 28

32 61 73 28

{sg 1 11

[tg 32 11 18 5]
[bg 28 73 61]
[sg 1 1]

[tq 11 19 5§ B4]
[bq 73 61 321
[sq 1 11

[tg 19 5 64 71]
[bg B1 32 111
[sq 1 21

[tg 5 64 71 7]
[bg 32 11 13]
[sq @ 1]

[tqg B4 71 7]
[bg 11 19 &l
[sq 1 9]

{tg 71 7]

[bq 19 5 B4]
[sq 8 1]

{tqg 7]

[bq 5 64 711
(sq 1 1]

[tq]

[bg B4 71 7]
[sq 1 91

{tql

bg 71 71

[sq @]

[tq]

[bg 7]

[sq]

[tq]

[bq]l

[sq]
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A similar algorithm works when the memory can read and write P

sequential words per cycle. In this case, the comparator must compare

multiple words per cycle (either in parallel or in a pipeline) and send a bit

back to the read-address hardware whenever it gets at least P words for

the high or low partition. This will require one more cycle than in the
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previous algorithm to get started, but we are guaranteed to have such a
block each cycle thereafter, since if we have 2P words which are divided
into two sets (those destined for the high partition and those destined for
the low partition), at least one of the sets must contain P or more elements.
We now assemble a P-word block (leaving the rest of the words for future

cycles) and write it back to memory at the previously scheduled address.

Thus we can perform a Quicksort as fast as the interleaved memory

can cycle, leading to quite high processing rates.
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9. Pipelined Computation On
Cylinders

As discussed above, the total execution latency of the arithmetic
operations is a very important consideration in determining the perfor-
mance of a pipelined system. We will now consider a three-dimensional
positioning of pipelined arithmetic hardware which helps keep this latency
as small as possible, as well as a method of scheduling the holding latches of
the pipeline which minimizes the timing criticality of certain global “pipe-

stopping” signals.

This dissertation is not the appropriate place for a detailed discussion
of pipelined digital system techniques. The reader is referred to [Kogge81]
for an excellent description of such systems. [Cotten65] and [Cotten69] are

good short papers on the timing of this type of digital circuitry.

9.1 The Topology of Pipelined Systems.

First, we observe that nearly all current hardware implementation
technologies constrain one to build with two-dimensional structures (wire-

wrap boards, PC cards, VLSI chips, etc.) interconnected at their edges.
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We need to now consider a realizable topology suitable for constructing our

pipelined arithmetic hardware.

Comnsider the hardware necessary to accomplish multiplication. Since
we are going to pipeline this hardware, its design will resemble that of
Figure 9.1. Since the flow of data is strictly forward, a natural choice for
physically positioning the hardware necessary to implement this design is
to follow the same strategy: build each combinatorial network and connect
them together such that the data flows from (say) left-to-right. Thus we are
computing on a rectangular array of logic elements with the inputs arriving
on the array’s left edge, with the computation flowing generally towards the

right, and with the outputs leaving from the right edge (Figure 9.2).

The total execution latency, however, includes the time it takes for
the signal to propagate from the result (arising at the right edge) to the
input (at the left edge). The right edge is the first location from which a
wrap-around can commence: it is where a result is first available to Wrap
from. An obvious way to minimize the wrap-around delay is to deform the
rectangle into a cylinder, with its right and left edges joined together as a

“seam”.

None of the considerations leading to the cylinder construction in-
volved anything unique to the structure of a multiplier; thus, one is led
to the same construction for all of the computing units of the pipelined
arithmetic hardware. However, the total latency time must include the
worst time from any output to any input. Thus, we are led to take all of

the cylinders and glue all of their seams together (or at least as closely as
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Figure 9.1: A Simple Pipelined Arithmetic Structure: A
Multiplier

physically possible). As a specific example, Figure 9.3 shows an idealized
picture of the topology of the S-1 Mark ITA arithmetic unit.

Consider now the advance signals in Figure 9.1. These signals tell
the computation at each stage of the arithmetic pipeline whether or not it is
allowed to proceed. Note that advance signals are pipe-stopping signals —
the absence of an advance signal means to stop that segment of the pipeline.

(The values of advance shown advance the pipeline once, i.e., a “single-step”
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Figure 9.2: Idealized Layout Of Figure 9.1

is indicated.) Some machines (e.g., the Cray-1) don’t have such signals;
instead, by the time an operation has made it to the computation section
(“issued” in Cray parlance), it has been checked and it is known that the
operation can flow unimpeded until it has finished (i.e., that there are no
possible future hazards for this operation). Such guarantees are difficult to
implement on more complicated machines, such as those with a memory
hierarchy (possibly including caches) or those which implement complex

microcoded operations.

The several conditions {e.g. floating-point overflow) whose occurrence
can require halting of the arithmetic pipeline have natures such that they
usually can be recognized just before stopping of the pipeline is required
by their occurrence. Assuming that we have some flexibility, we can place
the logic necessary to determine these stop conditions and to generate the

advance signals from the various stop conditions close to the seams of the



9. Pipelined Computation On Cylinders 71

Add
- fuqmional
\ unit

TN
Muitiplier
functional
unit

T — — — — — e —

Figure 9.3: Idealized Topology Of S-1 Mark A
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cylinders described above. This works well for the first and last pipeline
registers of Figure 9.1, but what about the stages in the interior (away from
the edges) of the cylinder? They are a significant distance from the edges
(where distance is measured in propagation delay of the signals which carry
the information of interest), and thus getting the advance signals to the
pipeline registers in the interior of the cylinders in time to correctly control
the pipeline could easily become a limiting consideration in increasing the
speed of a machine. (We have assumed that there is no substantially shorter
path for the advance signals than to follow the surface of the cylinder. This
is nearly always the case.) We now show a method of modifying the clock

timing of the interior registers such that the interior versions of the advance
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gignals can arrive later than would otherwise be necessary, and hence the
additional delay of traversing the surfaces of the cylinders is much less of

a problem.

A simple approach to pipelining as diagrammed in Figure 9.4 is sel-
dom sufficient in practice, especially when the pipeline stages are imple-
mented with latches for attainment of highest speed. The problem is that
both real components and real wires have skew; their maximum propaga-
tion delay is not equal to their minimum delay. Since a latch must be held
open for some period of time to allow the signal value input to it to stabi-

lize, there exists the very real problem of having sections of logic where the
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Figure 9.5: More Realistic Pipelined Structure

minimum propagation time decremented by the time the latch must be held
open is negative, which will at least sometimes lead to the pipeline’s output
register being loaded with incorrect data! (See Figure 9.4 for an example,
where the latches are “idealized”, i.e., the setup and hold times are zero, as
are the propagation delays from clock to output and from input to output.
The delay of real latches can be modelled by adding skew to the clocks and
adjusting the minimum and mazimum delays of the combinatorial logic

network.)
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For these reasons, a more realistic arithmetic pipeline might look
like that sketched in Figure 9.5 (and where, again, a “single-step” is
shown). Note that there can be more registers than pipeline stages, and
that the registers are not necessarily clocked with the same clock phase.

Furthermore, only some of the registers have advance signals.

What has been done is to designate certain of the registers as pipeline
holding registers. If the pipeline is stopped, then these registers hold the
data needed to resume the computation. Clearly, for an s-stage pipeline,
there need to be exactly s holding registers. The extra registers are there
to provide time-wise stability for the flow of data, i.e., to remove the effects

of skew from the combinatorial networks at each pipeline stage.

The choice of which pipeline registers to use as holding registers
is weakly constrained. Note, however, that we have located the holding
registers as “late” as possible. This is important as it means that the
corresponding advance signal can be late also. The last stage must be
exactly on a cycle boundary, since all of the arithmetic functional units
must produce their outputs at the same time and at multiples of cycles.
However, the last stage is the closest stage to the advance signal generation
logic, while the stages inside the cylinder (which are further from this logic)
are delayed, and thus need later versions of advance. This is exactly the

desired result: we have significantly lessened the time-criticality of advance.

To aid the designer in implementing such a circuit, it is useful to have
a notation which describes signals in such a way that illegal combinatorial

networks may be readily detected. For example, Figure 9.6 illustrates a
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circuit which combines signals from different pipeline stages (ERR SIG

1) and which combines signals from the same pipeline stage but with

inconsistent time delays from the pipeline’s origin (ERR SIG 2).

The naming convention developed for use in the S-1 Mark ITA
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ABOX design takes this design methodology into account, and consists
of three components: a signal name, a pipeline stage and a physical time
specification. For example, in the signal DATA A2 .S2.0-2.8 the signal name
is DATA, the signal is in the second stage of the A pipeline and the signal
is stable (at least) between 2.0 cycles and 2.8 cycles after the origin of the
pipeline. Figure 9.6 shows various versions of the signal DATA and how
they would be generated. Notice that the signal DATA A2 .S1.6-2.4 is a
very early version of a second pipeline stage signal which would require
a comparably early version of advance, and thus would probably not be

feasible to generate.

This notation (without the pipeline stage indication) and a sys-
tem for automatically verifying the timing of designs is described in
[McWilliams79]; the pipeline stage legality check has been done manually
in the S-1 Mark IIA design work, but clearly could be automated.
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10. Execution Out-of-Order
Without Imprecise Interrupts

Many high performance machines have allowed the execution of in-
struction streams “out of order” to increase performance. Unfortunately
this leads to a class of phenomena known as “imprecise interrupts”
[Anderson67, Kogge81la)], which make it difficult to deal with exception con-
ditions that arise as a result of operations within the pipeline. We discuss
here an approach to “out of order” execution which obviates the imprecise

interrupt problem.

We first define what is meant by “out-of-order” and “imprecise.” The
model of the instruction stream for a conventional architecture is sequential,
i.e., instructions can be considered to be executed serially. Therefore, let
us call the instruction sequence I,, for n > 0. A pipelined machine, of
course, attempts to perform the instructions in parallel while producing
the same result as if the serial nature of the stream had been preserved.
If every pipeline stage processes instructions in strict order (i.e., Intm is
never performed before I, for m > 0), then the execution of each stage is

serial and hence the operation of the pipeline as a whole may be considered
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to be “in order”.

Convgrsely, if any stage in the pipeline admits the possibility of I, +m
being performed before I,,, then we say that the execution of instructions

by the pipeline is “out-of-order”.

Note that there is nothing inherent in the definition of an “out-of-
order” pipeline which prohibits such a pipeline from producing the same
results as would strictly serial processing of the instruction stream, nor does
the definition of the “in-order” imply the same detailed functioning as a

gtrictly serial execution computer.

10.1 Imprecise Interrupts.

The choice of the n -+ 1°¢ instruction, In 41, may depend upon I, in

one of many ways. We will consider five.

I, may unconditionally specify I, 1 (e.g., a non-branching instruc-
tion is normally followed by the next instruction in memory). This is an

unconditional branch.

The choice of I,,4; may be from a (usually small) set of possibilities
specified by I,,, and the actual choice made as a function of the state of

the machine (before execution of I,,). This is a conditional branch.

I, 41 may not depend upon I, at all; rather it was selected as a
result of some event external to the pipeline. Such a break in the flow is an

tnterrupt. In general, the state of the machine after the execution of I, is
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saved so that at some later time the instruction sequence can be resumed

as if the external event had not occurred.

I, 1 may be chosen because the execution of I, left the machine in
some “unacceptable” state (such as with a word in memory not correctly
representing the true result of the operation which was to be performed,

such as overflow from an addition). This is a trap-a fter-ezecution.

Similar to trap-a fter-ezecution is trap-before-ezecution, wherel,
is chosen because the instruction that would normally have been after I,,,
say I', +1, Would have left the machine in an “unacceptable” state. This is
essentially equivalent to tentatively performing I, , ;, checking the machine
state that results and then undoing I, ,, if the resulting machine state
was “unacceptable”. Note that trap-be fore-ezecution is nearly always more
useful than trap-after-ezecution, since I', 41 IDay, if allowed to change the
state of the machine, destroy information necessary to reconstruct the state

before Pn+1: thus making debugging or recovery more difficult.

Finally, we say that a pipeline exhibits an tmprecise interrupt at
I,, for the sequence I;, (1 < j < n), if no sequence of instructions after
I, can reconstruct the machine state that would have existed immediately
after I,, in the serial execution of ;. Intuitively, the pipelined computer
has executed PJ for 5 > n which should not have been executed, due to a

trap or interrupt occurring at the time of I, .

General purpose computers do not usually exhibit imprecise inter-

rupts, except within instruction sequences containing traps. Allowing im-
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precise interrupts in the first three types of instruction sequencing depend-
encies listed above would be unacceptable, since all occur quite often, and
producing different results from the serial model of execution would not be
of great utility. Many high performance machines have permitted imprecise
interrupts in sequences containing traps, reasoning that a trap implies a fa-
tal error such that the continued correct execution is not necessary (or, at
least that the gains in performance of pipelines which exhibit such imprecise
interrupts are more important than the correct execution of such “rare”
cases). Machines exhibiting such imprecise interrupt behavior include the

IBM 360/91, the TI ASC, the CDC Star 100 and the Cray-1.

The appropriateness of handling traps imprecisely is arguable.
Taking this liberty in design eliminates (or at least makes very difficult) the
possibility of smart trap software which attempts to continue when the error
can be safely ignored or when the instruction sequence can be executed in
some other manner which avoids trapping (e.g., in higher precision). It also
means that the handling of rare but nonfatal errors must be performed by
the hardware. Extending the number system implemented by the hardware
with software which is only called into play when necessary is also difficult
or impossible when imprecise interrupts are allowed. Clearly, IBM has felt
that imprecise interrupts are too high a price to pay for increased pipeline
speed, since the 360/91 was the only computer in the 360/370 line which
ever exhibited it.

However, it is possible to have the performance advantages of out-

of-order execution without paying the price of imprecise interrupts. In
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essence, we must ensure that the state of the machine at any point in time
is equivalent to the state produced after some I,, where the execution had
proceeded serially. (Here equivalent means “exactly the same as” or “easily
transformable to.”) Clearly, the state at successive points in time must

correspond to increasing (but not necessarily sequential) values of n.

To implement this, we allow temporary changes of state, i.e., state
changes which allow successive instructions to proceed correctly, but which
can easily be undone. Temporary state changes must eventually be made
permanent, but only after it has been determined that the instruction caus-
ing the temporary change (and all preceeding instructions) will definitely be
executed. Thus, if we determine that some instruction I', was incorrectly
chosen and that I, should have been the next instruction, we wait until all
temporary changes made by instructions I; (k < n) have been made per-
manent and remove all temporary changes made by instructions Ig (7 2 n).

We may then properly proceed with the execution of I,,.

10.2 Three Example Systems.

To better illustrate these ideas, we now give three example systems.
The first is a simple in-order pipeline which doesn’t exhibit imprecise in-
terrupts, and the second and third have equal performance; the second
exhibits imprecise interrupts, while the third doesn’t. The extra hardware
needed to implement this additional functionality of the third example is

quite small, as will be shown.
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10.2.1 In-Order Pipeline Without Imprecise Interrupts.

It is relatively straightforward to implement an in-order pipeline
without imprecise interrupts. Let us call the first pipeline stage at which
the next instruction to be executed is known (and not just guessed, as on
a system with branch prediction) the control point; this is similar to the
definition used in [Holgate80]. By constructing the pipeline such that no
permanent state changes are made until after the control point, it is clear
that imprecise interrupts can always be avoided. The Mark IIA is such a

system, for instance.

10.2.2 Out-of-Order Pipeline With Imprecise Interrupts.

The IBM 360/91 is the classic example of a computer which can
execute instructions of-of-order but which exhibits the phenomenon of
imprecise interrupts. Other computers exhibiting this behavior include the
CDC 6600, 7600 and the Cray-1. A block diagram of such systems might
look like Figure 10.1.

10.2.3 Out-of-Order Pipeline Without Imprecise Interrupts.

Figure 10.2, although quite similar to Figure 10.1, does not exhibit
imprecise interrupts. Instead, stores (and other state changes) of instruc-
tions are kept in temporary memories which allow the computation to
proceed as in the pipeline of Figure 10.1. When the execution of instruction

I, has completed, in the sense that the instruction which must follow I,, has



10. Execution Out-of-Order Without Imprecise Interrupts 83

been determined (which, among other things, means that it has been deter-
mined whether or not I, causes a trap-after-execution or whether I} , ,
will cause a trap-before-execution), we allow the permanent writes of all
instructions I; with § < » to proceed. At any point, if it is determined
that the predicted sequence of instructions was incorrect, the contents of

the temporary registers are destroyed and the correct sequence is initiated.

Figure 10.3 shows how the Mark A ABOX might be modified to
implement the structure of Figure 10.2. A new instruction can be taken
every cycle from the IBOX. If the functional units are busy or the data
necessary to compute the new instructions are unavailable, then the in-
struction and its known data are saved. All results from both the adder
and the multiplier are saved in all four temporary registers. In this way,
the ordered nature of the permanent writes to be sent back to the IBOX
can be ignored by the computations within the ABOX.

PERMANENT

FLNEE‘T"“ IS R iihein

CHANGE
PERMANENT

ot Ancriowe | P
INSTRUCTION L CHANGE
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PERMANENT

F""EE?'“‘ —1  sTATE
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Figure 10.1: Out-of-Order Pipeline with Imprecise
Interrupts
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Figure 10.2: Out-of-Order Pipeline without Imprecise
Interrupts

10.3 Coneclusions.

We have shown a relatively straightforward method of removing im-
precise interrupts from an out-of-order pipeline. This allows the construc-
tion of machines which have the highest performance available within the
pipelined machine context, yet also feature the ease of debugging and

recoverability of a precise interrupt machine.
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11. Contributions, Conclusions and
Future Work

11.1 Summary.

A number of related techniques of importance to the design of high-
performance parallel pipelined computer has been described in this disser-

tation, and their consequences for performance analyzed.

In addition to the new algorithms developed (recapitulated in the
next section), two major new approaches to attainment of high computing
throughput without sacrifice of data processing sophistication have been

presented.

The first is the theoretical importance (and practical utility) of having
separate data formats: the set of external or architectural formats actually
seen by the programmer, and the set of internal formats actually used by

the arithmetic hardware to implement the operations of the computer.

The second is a methodology for efficient implementation of an arith-

metic pipeline-the concept of computing around cylinders. It is shown that
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this approach to hardware layout leads to relatively short interconnections
between functional units, while simplifying the layout and timing of the
logic used to implement them. A concise notation useful for describing the

signals on such cylinders is also characterized.

11.2 Contributions Of The Present Work.

Several significant and interrelated contributions to the general prob-
lem of how to design and implement digital computing systems which fea-
ture very high throughputs across a wide spectrum of problems and ap-
plications have been made in the course of the research described in this

dissertation.

The elementary function evaluation algorithm developed in the
present work, though simple, appears to be novel, and obviates a major
bias which previous generations of supercomputers have introduced into
scientific computation, namely, that deriving from the very high cost of
computing the standard elementary functions relative to the cost of addi-
tion or multiplication. The elementary functions of most importance in
this regard are divide, square-root, exponential and logarithm. The great
expense of evaluating such functions has occasioned much work in the de-
velopment of algorithms which act to remove such functions from inner
loops of scientific computations, often at a large cost in understandability,
extensibility or accuracy of such programs. A computer in which evaluation
of such functions entails costs nearly equal to that of addition or multiplica-

tion will surely be much easier to efficiently use in all such applications.
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The floating-point addition algorithm developed in the present work
results in a smaller latency for pipelined addition than previous approaches
and is a significant step in maintaining the necessary balance between
pipeline rate and latency so necessary for efficient operation of a general
purpose arithmetic engine. The second aspect of the algorithm, the pos-
sibility of simultaneously generating sums and differences, significantly en-
hances the performance of processors using it to execute the FFT algorithm
(and of the newer discrete Fourier transforms developed by [Winograd78]),

which in turn is of fundamental importance in many applications.

The use of a small but versatile skewing memory within a processor’s
pipeline to implement transposition and bit-address-reversing is original to
the present work. The use of skewed storage to efficiently access rows and
columns of a matrix is an old idea, but the use of skewed storage for doing

the bit-address-reverse operation necessary for the FF T appears to be novel.

The Quicksorting algorithm suitable for use on a cached, parallel,
pipelined machine is likewise novel. The author learned of the Cray-1
Quicksorting program after he had developed the two algorithms described
in chapter 8; the structure of the Cray-1 algorithm is similar to that of

algorithm 1, while algorithm 2 seems to be entirely original.

Finally, the approach given in this thesis for an out-of-order pipelined
execution structure which eliminates the problem of imprecise interrupts is
apparently original, and should substantially enhance the average perfor-

mance of processors which implement it.
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11.3 Future Work.

The bulk of the obvious extensions of the present work consists
of quantitative assessment of the impact of the individual and collective
effects of the algorithms described in this dissertation on the performance
of a digital computer employing them when processing various types of
applications kernels and programs. This can be accomplished most readily
through performance metering and subsequent analysis of the Mark IIA
hardware in the course of actual program execution, and will be done by

the author and his colleagues during the next year.

Longer range extension of the present work will involve studies of the
throughput gains available from use of the out-of-order pipelined execu-
tion structure in the author’s next computer implementation, and a much
wider range of studies by the computing community of the performance
levels which may be realized through exploitation of the techniques and al-
gorithms described in this work, both in the S-1 Mark ITA and subsequent

systems embodying them.
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